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Temporal Prefetching pisca 1997

« Powerful Idea

— Correlate a trigger I_ - = I_ —

address A to successor n I

address B I
— Capable of prefetching
Trigger I Successorl
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Voyager [ASPLOS 2021]

« First neural temporal prefetcher
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Voyager [ASPLOS 2021]
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Voyager [ASPLOS 2021]
% Speedup
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Standard ML Techniques to Reduce Cost

« Model Compression Techniques

— Quantization — Dropout

— Pruning — Operator Factorization

— Knowledge Distillation — Regularization

— Parameter Sharing — Neural Architecture Search
— (Un)structured Sparsity — Low Rank Adaptation

— Ephemeral Sparsity — Mixture of Experts
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Standard ML Techniques NOT ENOUGH

« Storage and latency grow with the memory footprint
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The Formulation is The Problem

« Addresses are not suitable as neural inputs / outputs
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The Formulation is The Problem

« Addresses are not suitable as neural inputs / outputs
— Grows with the footprint
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The Formulation is The Problem

« Addresses are not suitable as neural inputs / outputs
— Grows with the footprint + correlations useless across runs
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Our New Formulation

- Hide addresses by inserting layers of abstraction

r | r |
0x00000000 ‘© nl @ :I 0x00000000
: I s .= r E—— I‘l‘a & :
9 5 T =
> O » T-LITE | » 35 ¢
OxFFFFFFFF Lg G I Lu ) I OxFFFFFFFF
0— Address — T TR Abstraction _ _ -1 — Address —,

Space Space Space



The University of Texas at Austin

Voyager’s Cost vs Our Approach
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Voyager’s Cost vs Our Approach
Latency
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Voyager’s Cost vs Our Approach
Latency
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Overview
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 Twilight
— Significantly reduced cost (10.8x smaller + 988x faster)
— Still impractical
* Compare against Voyager [ASPLOS 21]
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Overview

 Twilight
— Significantly reduced cost (10.8x smaller + 988x faster)
— Still impractical
* Compare against Voyager [ASPLOS 21]

« Twilight-LITE (T-LITE for short)
— Efficiency-focused derivation of Twilight
— Near-practical (142x smaller + 1421x faster)
 Compare against Triage [MICRO 19]
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Twilight
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Key Insight: Sparse Connectivity

« Every address A is often followed by just a handful of
successor addresses {B, C, D, ...}
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Successors
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Sparse Connectivity in Practice
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Sparse Connectivity in Practice
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Candidate Selection

« Given the top-N most frequent successors {B, C, D, ...},
select which of them to prefetch (or to not prefetch)
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Candidate Selection

« Given the top-N most frequent successors {B, C, D, ...},
select which of them to prefetch (or to not prefetch)
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Twilight-LITE (T-LITE)
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Problem

« Voyager has a neural encoding for each unique address
in the memory footprint = High Storage Cost
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Intuition

- Data of a given type have similar access patterns

I_-___-m______l

Address Space
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Intuition

- Data of a given type have similar access patterns
— Per-Address Neural Encodings = Redundant + Wasteful

[N}

Address Space
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Behavioral Clustering

« Group addresses based on their prefetching behavior
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Behavioral Clustering

« Group addresses based on their prefetching behavior
— Each cluster shares one neural encoding
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Array Traversal BFS Traversal Binary Search
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Behavioral Clustering

« Insulates T-LITE from addresses on the input side
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Behavioral Clustering

« Insulates T-LITE from addresses on the input side
— Constant Storage Cost
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Evaluation
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Twilight vs Voyager

« Unconstrained Evaluation
— Purely comparing predictive power
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Twilight vs Voyager
« Unconstrained Evaluation
— Purely comparing predictive power

« Compared to Voyager, Twilight:
— has 988x shorter prediction latency
— requires 10.8x% less neural model storage

43



@ TEXA.S WHAT STARTS HERE CHANGES THE WORLD
The University of Texas at Austin

Twilight vs Voyager

« Unconstrained Evaluation
— Purely comparing predictive power

« Compared to Voyager, Twilight:
— has 988x shorter prediction latency
— requires 10.8x% less neural model storage

« How much does Twilight give up for this compression?
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Twilight Evaluation
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Twilight Evaluation
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Twilight Evaluation

% Speedup % Accuracy % Coverage
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T-LITE vs Practical Prefetchers

« More Realistic Evaluation
— Metadata storage cost

— T-LITE prediction latency
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T-LITE vs Practical Prefetchers

« More Realistic Evaluation
— Metadata storage cost

— T-LITE prediction latency

- Baseline:
— Triage [MICRO 2019]
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T-LITE vs Practical Prefetchers
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T-LITE vs Practical Prefetchers
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Cross-Input Evaluation

« Since T-LITE is trained offline, useful deployment
requires T-LITE to work across program inputs by
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Cross-Input Evaluation

« Since T-LITE is trained offline, useful deployment
requires T-LITE to work across program inputs by

— Adapting to new addresses
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Cross-Input Evaluation

« Since T-LITE is trained offline, useful deployment

requires T-LITE to work across program inputs by
— Adapting to new addresses
— Learning new correlations
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Cross-Input Evaluation

« Since T-LITE is trained offline, useful deployment

requires T-LITE to work across program inputs by
— Adapting to new addresses
— Learning new correlations

« Evaluate on GAP traces across diverse input domains:

road, citation, web
— Train, validate, and evaluate on different domains to
eliminate data leakage
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Conclusion

« We make neural temporal prefetching near-practical
— 142x less storage
— 1421x faster prediction
— No longer grows with memory footprint
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Conclusion

« We make neural temporal prefetching near-practical
— 142x less storage
— 1421x faster prediction
— No longer grows with memory footprint

« The key is our reformulation of the problem
— We abstract away from the address space

60



@ TEXAS WHAT STARTS HERE CHANGES THE WORLD

The University of Texas at Austin

Questions?
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