
A New Formulation of
Neural Data Prefetching

Quang Duong 1 Akanksha Jain 2 Calvin Lin 1

1 The University of Texas at Austin 2 Google

Temporal Prefetching [ISCA 1997]

• Powerful Idea
– Correlate a trigger

address A to successor
address B

2

A B

SuccessorTrigger

Temporal Prefetching [ISCA 1997]

• Powerful Idea
– Correlate a trigger

address A to successor
address B

– Capable of prefetching
any repeated stream of
accesses

3

A B

SuccessorTrigger

Voyager [ASPLOS 2021]

4

• First neural temporal prefetcher

Voyager [ASPLOS 2021]

5

• First neural temporal prefetcher
• Outperforms idealized

temporal prefetchers

Voyager [ASPLOS 2021]

6

• First neural temporal prefetcher
• Outperforms idealized

temporal prefetchers
• Completely impractical

– Designed as a limit study

Voyager’s Cost

7

Storage

2 MB LLC

Voyager’s Cost

8

Voyager
114 MB

57x

Storage

Voyager’s Cost

9

Voyager
114 MB

57x

Storage Latency

Latency between
LLC Accesses

Voyager’s Cost

10

Voyager
114 MB

57x

Voyager
81M FLOPs

200x

Storage Latency

Standard ML Techniques to Reduce Cost
• Model Compression Techniques

11

– Dropout
– Operator Factorization
– Regularization
– Neural Architecture Search
– Low Rank Adaptation
– Mixture of Experts

– Quantization
– Pruning
– Knowledge Distillation
– Parameter Sharing
– (Un)structured Sparsity
– Ephemeral Sparsity

Standard ML Techniques NOT ENOUGH
• Storage and latency grow with the memory footprint

12

13

Voyager

0x00000000
.
.
.
.

0xFFFFFFFF

Address
Space

0x00000000
.
.
.
.

0xFFFFFFFF

The Formulation is The Problem
• Addresses are not suitable as neural inputs / outputs

14

Voyager

0x00000000
.
.
.
.

0xFFFFFFFF

Address
Space

0x00000000
.
.
.
.

0xFFFFFFFF

The Formulation is The Problem
• Addresses are not suitable as neural inputs / outputs

– Grows with the footprint

15

Voyager

0x00000000
.
.
.
.

0xFFFFFFFF

Address
Space

0x00000000
.
.
.
.

0xFFFFFFFF

The Formulation is The Problem
• Addresses are not suitable as neural inputs / outputs

– Grows with the footprint + correlations useless across runs

Our New Formulation
• Hide addresses by inserting layers of abstraction

16

T-LITE

C
a
n
d

id
a
te

S

e
le

c
ti

o
n 0x00000000

.

.

.

.
0xFFFFFFFF

Address
Space

Abstraction
Space

B
e
h
a
v
io

ra
l

C
lu

s
te

ri
n
g0x00000000

.

.

.

.
0xFFFFFFFF

Address
Space

Voyager’s Cost vs Our Approach

17

Voyager
114 MB

57x

Storage

Voyager’s Cost vs Our Approach

18

Voyager
114 MB

57x

Storage

2 MB LLC

T-LITE
0.8 MB

0.4x

Voyager’s Cost vs Our Approach

19

Voyager
81M FLOPs

200x

Latency

Voyager
81M FLOPs

200x

Voyager’s Cost vs Our Approach

20

Latency

Latency Between
LLC Accesses

T-LITE
57K

0.15x

Overview

21

Overview
• Twilight

– Significantly reduced cost (10.8× smaller + 988× faster)
– Still impractical

• Compare against Voyager [ASPLOS 21]

22

Overview
• Twilight

– Significantly reduced cost (10.8× smaller + 988× faster)
– Still impractical

• Compare against Voyager [ASPLOS 21]

• Twilight-LITE (T-LITE for short)
– Efficiency-focused derivation of Twilight
– Near-practical (142× smaller + 1421× faster)

• Compare against Triage [MICRO 19]

23

Twilight

24

Key Insight: Sparse Connectivity
• Every address A is often followed by just a handful of

successor addresses {B, C, D, …}

25

A

Successors

D CB

12%
62%

26%

Sparse Connectivity in Practice

26

Temporal Prefetching
Opportunity

Top-1
68%

Sparse Connectivity in Practice

27

Top-4
85%

Sparse Connectivity in Practice

28

Top-20
94%

Sparse Connectivity in Practice

29

Top-20
94%

Sparse Connectivity in Practice

30

A
ll
 O

th
e
r

A
d

d
re

s
s
e

s
 6

%

Candidate Selection
• Given the top-N most frequent successors {B, C, D, …},

select which of them to prefetch (or to not prefetch)

31

Candidate Selection
• Given the top-N most frequent successors {B, C, D, …},

select which of them to prefetch (or to not prefetch)

32

Twilight

0x00000000
.
.
.
.

0xFFFFFFFF

Address
Space

Abstraction
Space

0x00000000
.
.
.
.

0xFFFFFFFF

Address
Space

1
.
.

20
NoPF

Twilight-LITE (T-LITE)

33

Problem
• Voyager has a neural encoding for each unique address

in the memory footprint = High Storage Cost

34

0x1234

0xABCD

0xCDEF 0xDEAD0xBEEF

0x4242

0x0000 0x4000

0x8000

Address Space

Intuition
• Data of a given type have similar access patterns

35

0x1234

0xABCD

0xCDEF 0xDEAD0xBEEF

0x4242

0x0000 0x4000

0x8000

Address Space

Intuition
• Data of a given type have similar access patterns

– Per-Address Neural Encodings = Redundant + Wasteful

36

0x1234

0xABCD

0xCDEF 0xDEAD0xBEEF

0x4242

0x0000 0x4000

0x8000

Address Space

Behavioral Clustering
• Group addresses based on their prefetching behavior

37

0x1234

0xABCD

0xCDEF

Binary Search

0xDEAD

0xBEEF

0x4242

BFS Traversal

0x0000

0x4000

0x8000

Array Traversal

Behavioral Clustering
• Group addresses based on their prefetching behavior

– Each cluster shares one neural encoding

38

0x1234

0xABCD

0xCDEF

Binary Search

0xDEAD

0xBEEF

0x4242

BFS Traversal

0x0000

0x4000

0x8000

Array Traversal

Behavioral Clustering
• Insulates T-LITE from addresses on the input side

39

T-LITE

1
.
.
.

4K

0x00000000
.
.
.
.

0xFFFFFFFF

Behavioral Clustering
• Insulates T-LITE from addresses on the input side

– Constant Storage Cost

40

T-LITE

1
.
.
.

4K

0x00000000
.
.
.
.

0xFFFFFFFF

0x00000000
.
.
.
.

0xFFFFFFFF

1
.
.
4

NoPF

Address
Space

Abstraction
Space

Address
Space

Evaluation

41

Twilight vs Voyager
• Unconstrained Evaluation

– Purely comparing predictive power

42

Twilight vs Voyager
• Unconstrained Evaluation

– Purely comparing predictive power

• Compared to Voyager, Twilight:
– has 988× shorter prediction latency
– requires 10.8× less neural model storage

43

Twilight vs Voyager
• Unconstrained Evaluation

– Purely comparing predictive power

• Compared to Voyager, Twilight:
– has 988× shorter prediction latency
– requires 10.8× less neural model storage

• How much does Twilight give up for this compression?

44

Twilight Evaluation

45

Twilight Evaluation

46

Twilight Evaluation

47

T-LITE vs Practical Prefetchers
• More Realistic Evaluation

– Metadata storage cost
– T-LITE prediction latency

48

T-LITE vs Practical Prefetchers
• More Realistic Evaluation

– Metadata storage cost
– T-LITE prediction latency

• Baseline:
– Triage [MICRO 2019]

49

T-LITE vs Practical Prefetchers

50

T-LITE vs Practical Prefetchers

51

T-LITE vs Practical Prefetchers

52

Cross-Input Evaluation
• Since T-LITE is trained offline, useful deployment

requires T-LITE to work across program inputs by

53

Cross-Input Evaluation
• Since T-LITE is trained offline, useful deployment

requires T-LITE to work across program inputs by
– Adapting to new addresses

54

Cross-Input Evaluation
• Since T-LITE is trained offline, useful deployment

requires T-LITE to work across program inputs by
– Adapting to new addresses
– Learning new correlations

55

Cross-Input Evaluation
• Since T-LITE is trained offline, useful deployment

requires T-LITE to work across program inputs by
– Adapting to new addresses
– Learning new correlations

• Evaluate on GAP traces across diverse input domains:
road, citation, web
– Train, validate, and evaluate on different domains to

eliminate data leakage
56

Cross-Input Evaluation

57

17%

Cross-Input Evaluation

58

2%

Conclusion
• We make neural temporal prefetching near-practical

– 142× less storage
– 1421× faster prediction
– No longer grows with memory footprint

59

Conclusion
• We make neural temporal prefetching near-practical

– 142× less storage
– 1421× faster prediction
– No longer grows with memory footprint

• The key is our reformulation of the problem
– We abstract away from the address space

60

Questions?

61

