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Temporal Prefetching [ISCA 1997]

• Powerful Idea
– Correlate a trigger 

address A to successor 
address B
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Temporal Prefetching [ISCA 1997]

• Powerful Idea
– Correlate a trigger 

address A to successor 
address B

– Capable of prefetching 
any repeated stream of 
accesses
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Voyager [ASPLOS 2021]
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• First neural temporal prefetcher



Voyager [ASPLOS 2021]
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Voyager [ASPLOS 2021]
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• First neural temporal prefetcher
• Outperforms idealized 

temporal prefetchers
• Completely impractical

– Designed as a limit study



Voyager’s Cost
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Voyager’s Cost
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Voyager’s Cost

9

Voyager
114 MB

57x

Storage Latency

Latency between 
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Voyager’s Cost
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Standard ML Techniques to Reduce Cost
• Model Compression Techniques
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– Dropout
– Operator Factorization
– Regularization
– Neural Architecture Search
– Low Rank Adaptation
– Mixture of Experts

– Quantization
– Pruning
– Knowledge Distillation
– Parameter Sharing
– (Un)structured Sparsity
– Ephemeral Sparsity



Standard ML Techniques NOT ENOUGH
• Storage and latency grow with the memory footprint
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The Formulation is The Problem
• Addresses are not suitable as neural inputs / outputs

– Grows with the footprint + correlations useless across runs



Our New Formulation
• Hide addresses by inserting layers of abstraction
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Voyager’s Cost vs Our Approach
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Voyager’s Cost vs Our Approach
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Voyager’s Cost vs Our Approach
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Voyager
81M FLOPs

200x

Voyager’s Cost vs Our Approach
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Latency

Latency Between 
LLC Accesses
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57K

0.15x



Overview
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Overview
• Twilight

– Significantly reduced cost (10.8× smaller + 988× faster)
– Still impractical

• Compare against Voyager [ASPLOS 21]
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Overview
• Twilight

– Significantly reduced cost (10.8× smaller + 988× faster)
– Still impractical

• Compare against Voyager [ASPLOS 21]

• Twilight-LITE (T-LITE for short)
– Efficiency-focused derivation of Twilight
– Near-practical (142× smaller + 1421× faster)

• Compare against Triage [MICRO 19]

23



Twilight
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Key Insight: Sparse Connectivity
• Every address A is often followed by just a handful of 

successor addresses {B, C, D, …}
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Sparse Connectivity in Practice
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Temporal Prefetching
Opportunity



Top-1
68%

Sparse Connectivity in Practice
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Top-4
85%

Sparse Connectivity in Practice
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Top-20
94%

Sparse Connectivity in Practice
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Top-20
94%

Sparse Connectivity in Practice
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Candidate Selection
• Given the top-N most frequent successors {B, C, D, …}, 

select which of them to prefetch (or to not prefetch)
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Candidate Selection
• Given the top-N most frequent successors {B, C, D, …}, 

select which of them to prefetch (or to not prefetch)

32

Twilight

0x00000000
.
.
.
.

0xFFFFFFFF

Address
Space

Abstraction
Space

0x00000000
.
.
.
.

0xFFFFFFFF

Address
Space

1
.
.

20
NoPF



Twilight-LITE (T-LITE)
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Problem
• Voyager has a neural encoding for each unique address 

in the memory footprint = High Storage Cost
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Intuition
• Data of a given type have similar access patterns
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Intuition
• Data of a given type have similar access patterns

– Per-Address Neural Encodings = Redundant + Wasteful
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Behavioral Clustering
• Group addresses based on their prefetching behavior
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Behavioral Clustering
• Group addresses based on their prefetching behavior

– Each cluster shares one neural encoding

38

0x1234

0xABCD

0xCDEF

Binary Search

0xDEAD

0xBEEF

0x4242

BFS Traversal

0x0000

0x4000

0x8000

Array Traversal



Behavioral Clustering
• Insulates T-LITE from addresses on the input side
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Behavioral Clustering
• Insulates T-LITE from addresses on the input side

– Constant Storage Cost
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Evaluation
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Twilight vs Voyager
• Unconstrained Evaluation

– Purely comparing predictive power
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Twilight vs Voyager
• Unconstrained Evaluation

– Purely comparing predictive power

• Compared to Voyager, Twilight:
– has 988× shorter prediction latency
– requires 10.8× less neural model storage
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Twilight vs Voyager
• Unconstrained Evaluation

– Purely comparing predictive power

• Compared to Voyager, Twilight:
– has 988× shorter prediction latency
– requires 10.8× less neural model storage

• How much does Twilight give up for this compression?
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Twilight Evaluation
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Twilight Evaluation
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Twilight Evaluation
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T-LITE vs Practical Prefetchers
• More Realistic Evaluation

– Metadata storage cost
– T-LITE prediction latency

48



T-LITE vs Practical Prefetchers
• More Realistic Evaluation

– Metadata storage cost
– T-LITE prediction latency

• Baseline:
– Triage [MICRO 2019]
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T-LITE vs Practical Prefetchers
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T-LITE vs Practical Prefetchers
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T-LITE vs Practical Prefetchers
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Cross-Input Evaluation
• Since T-LITE is trained offline, useful deployment 

requires T-LITE to work across program inputs by

53



Cross-Input Evaluation
• Since T-LITE is trained offline, useful deployment 

requires T-LITE to work across program inputs by
– Adapting to new addresses
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Cross-Input Evaluation
• Since T-LITE is trained offline, useful deployment 

requires T-LITE to work across program inputs by
– Adapting to new addresses
– Learning new correlations
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Cross-Input Evaluation
• Since T-LITE is trained offline, useful deployment 

requires T-LITE to work across program inputs by
– Adapting to new addresses
– Learning new correlations

• Evaluate on GAP traces across diverse input domains: 
road, citation, web
– Train, validate, and evaluate on different domains to 

eliminate data leakage
56



Cross-Input Evaluation
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Cross-Input Evaluation
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Conclusion
• We make neural temporal prefetching near-practical

– 142× less storage
– 1421× faster prediction
– No longer grows with memory footprint
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Conclusion
• We make neural temporal prefetching near-practical

– 142× less storage
– 1421× faster prediction
– No longer grows with memory footprint

• The key is our reformulation of the problem
– We abstract away from the address space

60



Questions?
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