
Streamlined On-Chip
Temporal Prefetching

Quang Duong Calvin Lin

Background: Temporal Prefetching

2

A B …

Memory Access Stream

Capable of covering ANY repeated stream

Background: Temporal Prefetching

3

A B …

Memory Access Stream

Learn that B follows A

Capable of covering ANY repeated stream

Background: Temporal Prefetching

4

A B … A

Memory Access Stream

Learn that B follows A

Capable of covering ANY repeated stream

Background: Temporal Prefetching

5

A B … A

Memory Access Stream

B

Learn that B follows A Prefetch B on next access to A

Capable of covering ANY repeated stream

Background: On-Chip Prefetchers

6
Last-Level Cache

L2 Cache

 LLC
 Accesses

Data

Background: On-Chip Prefetchers

7
Last-Level Cache

L2 Cache Temporal Prefetcher

Learn Correlations
and Issue Prefetches

Data

 LLC
 Accesses

Data Partition

Background: On-Chip Prefetchers

8
Last-Level Cache

L2 Cache Temporal Prefetcher

Metadata Partition

Metadata
Access

Learn Correlations
and Issue Prefetches

 LLC
 Accesses

Data Partition

Background: On-Chip Prefetchers

9
Last-Level Cache

L2 Cache Temporal Prefetcher

Metadata Partition

Metadata
Access

Learn Correlations
and Issue Prefetches

 LLC
 Accesses

Resize Metadata Partition

Data Partition

Background: On-Chip Prefetchers

10
Last-Level Cache

Metadata Partition

L2 Cache Temporal Prefetcher

Learn Correlations
and Issue Prefetches

 LLC
 Accesses

Metadata
Access

Resize Metadata Partition

Background: On-Chip Prefetchers

11
Last-Level Cache

Metadata
PartitionData Partition

L2 Cache Temporal Prefetcher

Learn Correlations
and Issue Prefetches

 LLC
 Accesses

Metadata
Access

Resize Metadata Partition

 (O2) To minimize the impact on data hit rates,
 prefetchers need smaller metadata partitions

Motivation: Two Opposing Objectives

12

 (O1) To maximize prefetch coverage, prefetchers
 need larger metadata partitions

Overview

13

 Our work answers two design questions:

 (Q1) How should on-chip metadata be represented?

 (Q2) How should on-chip metadata be managed?

Overview

14

 Our work answers two design questions:

 (Q1) How should on-chip metadata be represented?

 (Q2) How should on-chip metadata be managed?

(A, B) (B, C) (C, D) (D, E)

SOTA Metadata Representation: Pairs

15

A B C D

Memory Access Stream

E

Entries pair one trigger with one prefetch target

Entries

(A, B) (B, C) (C, D) (D, E)

Pairs are Inherently Redundant

16

A B C D

Memory Access Stream

E

Pairs inherently store each address twice

Entries

17

Pairs lack Spatial Locality

Temporal locality doesn’t translate to spatial locality

Metadata Partition

18

Pairs lack Spatial Locality

Temporal locality doesn’t translate to spatial locality

Metadata Partition

(A, B)

(A, B)

19

Pairs lack Spatial Locality

Temporal locality doesn’t translate to spatial locality

Metadata Partition

(A, B)(B, C)

(A, B)

(B, C)

20

Pairs lack Spatial Locality

Temporal locality doesn’t translate to spatial locality

Metadata Partition

(A, B)

(C, D)

(B, C)

(A, B)

(B, C)

(C, D)

21

Pairs lack Spatial Locality

Temporal locality doesn’t translate to spatial locality

Metadata Partition

(A, B)

(C, D)

(B, C)

(D, E)

(A, B)

(B, C)

(C, D)

(D, E)

22

Pairs lack Spatial Locality

Pairs incur one LLC read per prefetch

Metadata Partition

(A, B)

(C, D)

(B, C)

(D, E)

(A, B)

(B, C)

(C, D)

(D, E)

Pairs incur Traffic on Resize

23

Pair indexing function depends on partition size

0.5 MB Partition 1 MB Partition

(B, C) (A, B)

Pairs incur Traffic on Resize

24

Pair indexing function depends on partition size

0.5 MB Partition 1 MB Partition

(B, C) (A, B) (A, B)

Pairs incur Traffic on Resize

25

Pair indexing function depends on partition size

0.5 MB Partition 1 MB Partition

(B, C) (A, B) (A, B)

(B, C)

26

What is a better metadata representation?

(A, BCDE)

Our Metadata Representation: Streams

27

A B C D

Memory Access Stream

E

Entries map a trigger to multiple prefetch targets

Entries

(A, BCDE)
28

A B C D

Memory Access Stream

E

Entries map a trigger to 4 prefetch targets

Our Metadata Representation: Streams

Entries

Streams reduce Redundancy

29

Streams enable the store of 33% more correlations

(A, B)

(A, BCDE)

(B, C) (C, D) (D, E)

vs

Pairs

Streams

Streams have Inherent Spatial Locality

30

Streams reduce metadata traffic by up to 4x

(A, B)

(A, BCDE)

Pairs

Streams

B

E

C
D

B

vs

Streams Resize Migration-Free

31

Streams enable a simpler, fixed indexing function

0.5 MB Partition 1 MB Partition

(A, BCDE)(A, BCDE)

Streams introduce New Problems

32

Streams introduce New Problems

33

Streams introduce a new form of redundancy

(A, BCDE)

(B, CDEF)

Streams introduce New Problems

34

Streams introduce a new form of redundancy

Streams inherently reduce the number of triggers

Streams lead to more conflict misses

Streams introduce New Problems

35

Streams introduce a new form of redundancy

Streams inherently reduce the number of triggers

Streams lead to more conflict misses

Our Streamline prefetcher resolves these problems

See paper for more details

Overview

36

 Our work answers two design questions:

 (Q1) How should on-chip metadata be represented?

 (Q2) How should on-chip metadata be managed?

Metadata Replacement Policy

37

Prior work treats metadata the same as raw data

A

Memory Access Stream

ZY BB X B A

(B, Y)(B, X) (B, Z)

Metadata Replacement Policy

38

Prior work treats metadata the same as raw data

A

Memory Access Stream

ZY BB X B A

(B, Y)(B, X) (B, Z)

Metadata Replacement Policy

39

Prior work treats metadata the same as raw data

A

Memory Access Stream

ZY BB X B A

Metadata Replacement Policy

40

Our work considers the prefetch utility of metadata

A

Memory Access Stream

ZY BB X B A

(A, B) (A, B)

Metadata Replacement Policy

41

Our work considers the prefetch utility of metadata

A

Memory Access Stream

ZY BB X B A

(A, B) (A, B)

Metadata Replacement Policy

42

Our work considers the prefetch utility of metadata

A

Memory Access Stream

ZY BB X B A

Metadata Dynamic Partitioning

43

Prior work partitions the LLC to maximize the
combined data and metadata hit rate

(A, B) (B, C) Data Data

Metadata Dynamic Partitioning

44

Prior work partitions the LLC to maximize the
combined data and metadata hit rate

(A, B) (B, C) Data Data

(A, B) (B, C) (C, D) DataR
es

iz
e

Metadata Dynamic Partitioning

45

Our work partitions the LLC to maximize the
combined data and useful metadata hit rate

(A, B) (B, C) Data Data

(A, B) Data Data DataR
es

iz
e

EVALUATION

46

Single Core Performance

47

B
 E

 T
 T

 E
 R

Speedup: + 3 %pt

Coverage: + 12.5 %pt

Accuracy: + 3.6 %pt

Multi Core Performance

48

B
 E

 T
 T

 E
 R

on 2-Core: + 7.2 %pt

on 4-Core: + 6.8 %pt

on 8-Core: + 6.7 %pt

B
 E

 T
 T

 E
 R

On-Chip Metadata Traffic

49

Read Traffic: - 26 %

Write Traffic: - 56 %

All Traffic: - 37 %

Storage Efficiency

50

B
 E

 T
 T

 E
 R

 MB: + 1.8 %pt

 MB: + 2.5 %pt

1 MB: + 3 %pt

 MB: + 2.3 %pt½

¼

⅛

Storage Efficiency

51

B
 E

 T
 T

 E
 R

Beats Triangel even
when Triangel has

2x metadata storage

 MB: + 1.8 %pt

 MB: + 2.5 %pt

1 MB: + 3 %pt

 MB: + 2.3 %pt½

¼

⅛

 MB: + 1.8 %pt

 MB: + 2.5 %pt

1 MB: + 3 %pt

 MB: + 2.3 %pt

Storage Efficiency

52

B
 E

 T
 T

 E
 R Beats Triangel even

when Triangel has
storage outside LLC ½

¼

⅛

Single Core w/ SOTA Delta Prefetcher

53

B
 E

 T
 T

 E
 R vs Berti: + 3.9 %pt

vs Triangel: + 2.9 %pt

Multi Core w/ SOTA Delta Prefetcher

54

B
 E

 T
 T

 E
 R

on 2-Core: + 4.1 %pt

on 4-Core: + 3.8 %pt

on 8-Core: + 3.8 %pt

Multi Core w/ SOTA Delta Prefetcher

55

B
 E

 T
 T

 E
 R

on 2-Core: + 4.1 %pt

on 4-Core: + 3.8 %pt

on 8-Core: + 3.8 %pt

Triangel provides no
multi-core benefit over
SOTA delta prefetching

Brief Summary

56

 Our Streamline prefetcher leverages the
 structure and the semantics of streams in:

 (1) our representation of on-chip metadata

 (2) our management of on-chip metadata

Streamlined On-Chip
Temporal Prefetching

Quang Duong Calvin Lin

Thank You

