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  (O2) To minimize the impact on data hit rates,
           prefetchers need smaller metadata partitions

Motivation: Two Opposing Objectives
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  (O1) To maximize prefetch coverage, prefetchers
           need larger metadata partitions
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A B C D

Memory Access Stream

E
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Pairs lack Spatial Locality

Pairs incur one LLC read per prefetch

Metadata Partition
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What is a better metadata representation?
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A B C D

Memory Access Stream
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A B C D

Memory Access Stream

E

Entries map a trigger to 4 prefetch targets

Our Metadata Representation: Streams

Entries



Streams reduce Redundancy

29

Streams enable the store of 33% more correlations
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Streams have Inherent Spatial Locality
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Streams reduce metadata traffic by up to 4x
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Streams Resize Migration-Free
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Streams enable a simpler, fixed indexing function

0.5 MB Partition 1 MB Partition

(A, BCDE)(A, BCDE)
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Streams introduce a new form of redundancy

(A, BCDE)

(B, CDEF)
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35

Streams introduce a new form of redundancy

Streams inherently reduce the number of triggers

Streams lead to more conflict misses

Our Streamline prefetcher resolves these problems

See paper for more details
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 Our work answers two design questions:

  (Q1) How should on-chip metadata be represented?

  (Q2) How should on-chip metadata be managed?



Metadata Replacement Policy

37

Prior work treats metadata the same as raw data

A

Memory Access Stream

ZY BB X B A



(B, Y)(B, X) (B, Z)

Metadata Replacement Policy

38

Prior work treats metadata the same as raw data

A

Memory Access Stream

ZY BB X B A



(B, Y)(B, X) (B, Z)

Metadata Replacement Policy

39

Prior work treats metadata the same as raw data

A

Memory Access Stream

ZY BB X B A



Metadata Replacement Policy

40

Our work considers the prefetch utility of metadata

A

Memory Access Stream

ZY BB X B A



(A, B) (A, B)

Metadata Replacement Policy

41

Our work considers the prefetch utility of metadata

A

Memory Access Stream

ZY BB X B A



(A, B) (A, B)

Metadata Replacement Policy

42

Our work considers the prefetch utility of metadata

A

Memory Access Stream

ZY BB X B A



Metadata Dynamic Partitioning

43

Prior work partitions the LLC to maximize the 
combined data and metadata hit rate

(A, B) (B, C) Data Data



Metadata Dynamic Partitioning

44

Prior work partitions the LLC to maximize the 
combined data and metadata hit rate

(A, B) (B, C) Data Data

(A, B) (B, C) (C, D) DataR
es

iz
e



Metadata Dynamic Partitioning
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Our work partitions the LLC to maximize the 
combined data and useful metadata hit rate
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Single Core Performance
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Speedup: + 3 %pt

Coverage: + 12.5 %pt

Accuracy: + 3.6 %pt
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On-Chip Metadata Traffic
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Read Traffic: - 26 %

Write Traffic: - 56 %

All Traffic: - 37 %
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Multi Core w/ SOTA Delta Prefetcher
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on 2-Core: + 4.1 %pt

on 4-Core: + 3.8 %pt

on 8-Core: + 3.8 %pt

Triangel provides no 
multi-core benefit over 
SOTA delta prefetching



Brief Summary
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  Our Streamline prefetcher leverages the
  structure and the semantics of streams in:

   (1) our representation of on-chip metadata

   (2) our management of on-chip metadata
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